Surface Roughening of Polystyrene and Poly(methyl methacrylate) in Ar/O2 Plasma Etching

نویسندگان

  • Yuk-Hong Ting
  • Chi-Chun Liu
  • Sang-Min Park
  • Hongquan Jiang
  • Amy E. Wendt
چکیده

Selectively plasma-etched polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer masks present a promising alternative for subsequent nanoscale patterning of underlying films. Because mask roughness can be detrimental to pattern transfer, this study examines roughness formation, with a focus on the role of cross-linking, during plasma etching of PS and PMMA. Variables include ion bombardment energy, polymer molecular weight and etch gas mixture. Roughness data support a proposed model in which surface roughness is attributed to polymer aggregation associated with cross-linking induced by energetic ion bombardment. In this model, RMS roughness peaks when cross-linking rates are comparable to chain scissioning rates, and drop to negligible levels for either very low or very high rates of cross-linking. Aggregation is minimal for very low rates of cross-linking, while very high rates produce a continuous cross-linked surface layer with low roughness. Molecular weight shows a negligible effect on roughness, while the introduction of H and F atoms suppresses roughness, apparently by terminating dangling bonds. For PS etched in Ar/O2 plasmas, roughness decreases with increasing ion energy are tentatively attributed to the formation OPEN ACCESS Polymers 2010, 2 650 of a continuous cross-linked layer, while roughness increases with ion energy for PMMA are attributed to increases in cross-linking from negligible to moderate levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Denture base polymers, poly methyl methacrylate improved using free radical copolymerization

Poly methyl methacrylate (PMMA) is the most common material used in Prosthodontics. Several studies indicate a breakdown of the number of very high resin bases after 2 to 3 years to avoid breaking bass and several attempts have been made, such as altering the chemical structure of resin by adding causes cross linking or copolymerization. The innovative method for improving the physical properti...

متن کامل

Model PolymerEtching Mechanisms and Surface Modification by a Time- Modulated RF Plasma Jet

Cold atmospheric pressure plasma jets (APPJs) are able to generate chemically reactive species desired for material processing and biomedical applications. A great amount of attention has been devoted to characterizing these APPJ sources and expanding their applications. Less is known on the interaction mechanisms between cold atmospheric pressure plasma and material surfaces. Since both plasma...

متن کامل

Nano-Structure Roughening on Poly(Lactic Acid)PLA Substrates: Scanning Electron Microscopy (SEM) Surface Morphology Characterization

Scanningelectron microscopy (SEM) has been utilized  to examine  the morphology and topography alterations  in the surface of Poly(Lactic Acid)(PLA) fabrics due to UV/Ozoneirradiation. In the past decade, a growing attention in the usage of “Green Techniques” in industrial applications has been observed owing to many benefits such as low impurities and their relatively low cost to substitute th...

متن کامل

A Novel Initiator of [5-(benzyloxy)-4-oxo-4H-pyran-2-yl]methyl-2-bromo-2-methylpropanoateas in Atom Transfer Radical Polymerization of Styrene and Methyl Methacrylate

A novel nano-initiator containing kojic acid moiety, [5-(benzyloxy)-4-oxo-4H-pyran-2-yl)methyl-2-bromo-2-methylpropanoate was synthesized by the reaction of 5-(benzyloxy)-2-(hydroxymethyl)-4H-pyran-4-one with 2-bromoisobutyryl bromide in triethylamine and used as initiator in the atom transfer radical polymerization (ATRP) of styrene and methyl methacrylate in the presence of Cu(0)/CuCl2and N,N...

متن کامل

Formation of Highly Ordered Alloy Nanoparticles Based on Precursor-Filled Latex Spheres

An experimental approach is presented, allowing the preparation of substrate supported, hexagonally arranged metallic alloy nanoparticles with narrow size distributions, well-defined interparticle distances, and controlled chemical composition. The method is based on miniemulsion polymerization and isotropic plasma etching. Polystyrene (PS) and poly(methyl methacrylate) (PMMA) colloidsin the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010